技术资料
涤纶织物的防水透湿及拒水拒油整理发展概况
不详
2022/10/30
浏览数:1711

涤纶织物的防水透湿及拒水拒油整理发展概况

  李淑华   南通纺织职业技术学院

  原载:六届论文集;109-112(lq022)

 

    【摘要】综述了涤纶织物的防水管湿整理及拒水拒油整理的机理,方法、整理剂类型等,探讨了荷叶效应在涤纶织物拒水拒油整理方面的应用及其发展前景。

【关键词】涤纶 防水透湿 拒水拒油 整理 荷叶效应

 

1   前言

    自本世纪初人造纤维工业化生产以来,至今化纤已占了纺织纤维中的五成以上。其中,涤纶产量又占了化纤产量的一半以上,因此涤纶是纺织用化学纤维中左右全局的最大一个品种[1]。近年来,随着涤纶细旦、超细旦纤维的迅猛发展,除了在仿真丝薄型服装面料方面应用广泛之外,用于装饰和

产业方面,如:帐篷、高性能清洁布、汽车,飞机等内装饰布、地毯、沙发面料、墙布等也愈来愈广泛[2]。而随着科学技术的发展,纺织产品向功能化、智能化方向发展,已成为未来纺织品发展的主要趋向[3],同时,随着人们生活水平的提高,对纺织品除了传统的坚牢、耐用等力学性能要求外,各种舒适性能、外观性能和特殊性能等越来越受到重视。一些经过特种整理的新型纺织品能给人们提供各种优异的功能,从而满足特殊用途的要求,涤纶织物的防水透湿及拒水拒油整理就是其中之一[4]。

2   防水与防水透湿整理

2·1  防水性

    织物的防水性是指织物阻抗水分子透过的性能。传统的处理方式是在织物的表面涂上一层不透水的涂层,如聚氯乙烯树脂、聚氨基甲酸酯类树脂等,以消除其透水性,此类方法过去应用较多,但却并不是解决问题的最好方法,因为这种涂层不能透过水蒸汽,它限制了人体汗液蒸发后的散发,并使水汽冷凝在织物的内表面,穿着很不舒服。

2·2   防水透湿机理

   防水性和透湿性表面上似乎是矛盾的,但从织物结构和加工方式上可取得一致。水汽分子的直径一般为4×10-4μm,雨滴的直径通常为102μm [5]。所以只要织物中孔隙的直径控制在水汽分子可通过而水滴不能通过的范围内,便可起到防水透湿的作用。织物要阻止水的渗透,取决于织物表面能的大小及水滴对织物表面的接触角Q,当Q大于等于90时,织物的临界表面张力小于水的临界表面张力,织物可以被水润湿。但由于织物具有芯吸性(毛细管效应),不能阻止水滴的渗透,所以要进行适当的防水整理,使织物的表面能低于水,同时由于水的内聚力的作用,水滴呈珠状,从而使织物具有防水

性能。

    在人体、衣服、环境三者形成的体系中存在湿与热的传递,湿的传递方式有两种:出汗发散(液相传递)和无感蒸发排泄(气相传递)。人体随环境和活动状态及穿着衣服的不同,在人的皮肤周围出现的人工气候,其相对湿度为50%,舒适温度为32。织物的透湿性与纤维的种类、织物的结构和织物的整理等密切相关,当服装内侧的温度高于外侧时,在织物两侧就存在一个压力梯度,在它的作用下,水蒸气分子能通过织物细密通道与外界进行热湿交换[6]。

2·3    防水透湿整理

新的防水透湿整理方法是采用在织物表面涂上具有微孔的薄膜或采用超细纤维织造紧密织物,从而阻止液态水的通过,而允许水蒸汽分子通过,同时保持了织物具有一定的透气和透湿(水蒸汽)能力,因此又称为防水透气整理或防水透湿整理

涤纶的防水透湿织物主要有如下三种:

1)经拒水整理的高密织物

紧密型防水织物是利用改变织物结构而达到防水透湿的目的。此类织物是最早研制成功的防水透湿织物[7],其机理为:水汽在纱线空隙之间简单的扩散;纤维束之间的毛细管传递;在单根纤维之间的扩散。现在的紧密型防水织物,大多采用超细聚酯纤维为原料[8],此类织物中,纤维之间、纱线之间紧密排列,使织物在不进行拒水整理的情况下,耐水压达104-1O5Pa。同时,纤维纱线之间形成毛细管,由于毛细管效应的存在,能很好地传输水蒸气。

    紧密型织物的优点在于制备工艺简单,主要是纱线和丝纤度的变化,制成的衣物悬垂性好,透湿性好。但该织物耐水压较低,大大限制了它的应用范围。

   (2)层压织物

    层压织物又称粘贴薄膜型防水透湿织物,它是把功能性膜粘贴到织物上,此类织物按所用的功能性膜可分为三类:微孔膜型、致密亲水膜、微孔亲水结合膜。粘合剂在此处也起到很重要的作用,粘合剂主要有两种:透湿型,可连续涂层;不透湿型,只能以网点式粘合,不至于破坏透湿性,此类织物最成功、最著名的是美国W.L.Gore公司的Gore-Tex织物[3],它是目前市场上公认的最先进的防水透湿织物,它是利用聚四氟乙烯(PTFE)微孔膜与织物复合而成,由于该微孔膜的制备需要特殊的设备与工艺,产品加工难度大,成本高,成衣价格贵,其柔软性、悬垂性,不太令人满意。

   (3)涂层织物

    涂层法是指织物直接或间接地进行涂层,使织物具有防水性,透气性是通过产生微孔结构或使其具有亲水性而得到的[7]。它可以分为三种类型:微孔涂层法、亲水性涂层法、微孔亲水结合法。

    涂层织物的生产工艺的成本较低,亲水性涂层以水为溶剂,成本低,污染少,亲水性涂层可按传统工艺进行。但涂层法以有机溶剂体系为主,溶剂回收设备费用较高,且易造成环境污染。织物涂层处理后,悬垂性和柔软性变差,防水耐久性差,附着牢度差。

3    涤纶织物的拒水、拒油整理及其发展情况

3·1    织物的拒水

    织物的拒水性是指织物将水滴从其表面反拨落下的性能,拒水整理的目的是阻止水对织物的润湿,利用织物毛细管的附加压力,阻止液态水的透过,但仍然保持了织物的透气透湿性能,此类织物做成的服装,既有良好的防水性,又能较快地将体表汗液蒸汽排出,保持了服装干爽、温暖的感觉,从而大大提高了服装的舒适性,扩大了织物的应用范围,拒水整理织物首先用于生产军服、防护服,现在己广泛用于制作运动服、旅行包、旅行装、帐篷等。国内、国际市场上对这类面料的需求正在逐年增加。

3·2    织物拒水、拒油机理[9]

根据润湿理论,液体润湿固体表面的能,采用铺展系数S表示:

S=YS-YL/YSL

由上式可得出以下结论:

    (1)固体表面能YS越大,S就越大,固体越容易被液体润湿,反之,如果固体表面能YS越小,S越小,固体越难被液体润湿,固体就具有抗拒液体润湿的能力。

    (2)液体的表面能YL越小,S就越大,液体越容易润湿固体。

    (3)固体与液体的界面表面能YSL 越小,S越大,水的表面能比较高,为72.6mJ/M2。拒水材料的表面能必须比此值小。油类的表面能一般在20-40 J/M2,拒油材料的表面能必须比此值小,所以,油的润湿能力远大于水,所以,拒油的物质一定拒水,而一般的涤纶织物,表面能远大于水和油的表面能,因此,为了使涤纶织物拒水拒油,就要在其表面涂一层低表面能的材料。硅橡胶的表面能约为25mJ/m2,是比较理想的拒水材料,氟树脂的表面能约为5 mJ/m2,是比较理想的拒抽材料。

3·3   拒水、拒油整理剂

    由拒水拒油整理的机理可以看出,在涤纶织物表面吸附一层物质,使其原来的高能表面变为低能表面,就可以获得具有拒水效果的织物,且表面能愈小效果愈好,国内外生产和使用的拒水剂主要有以下几种:(1)石蜡-铝皂类,(2)吡啶季铵盐类,(3)羟甲基三聚氰胺衍生物,(4)硬脂酸铬络合物,(5)有机硅型,(6)氟烷基树脂类[10]。前五类拒水剂有共同弱点:不拒油、不防污、耐洗性差。近年来,含氟化合物在织物拒水、拒油、防污整理力面的应用正在发展中。在纺织品拒水加工中,氟烷基化合物的实用化是在20世纪50年代,最早由美国杜邦公司进行氟聚合物织物拒水拒油整理的尝试,并率先发表了以四氟乙烯乳液作为织物拒水拒油整理剂的专利。后来美国3M公司研制开发了以全氟羧酸铬的络合物为主要成份的织物整理剂,但很快被性能更好的含氟丙烯酸酯形成的聚合物所取代,并用于织物拒水拒油整理,推出的商品为Scotchguard,而后杜邦的Teflon,旭硝子的Asahi guard,大金工业株式会杜Unidync等相继问世[11],这些含氟拒水剂具有拒水、拒油性,而且不损害纤维原有的风格,因此得到了迅速普及推广,成为当今拒水剂的主流[l2]。

    国外最早将有机氟树脂运用于尼龙、涤纶、涤/棉、棉等织物的拒水拒油整理报道较多,国内在拒水性方面研究也有一些报道。

3·4   荷叶效应在涤纶织物拒水拒油整理中的应用

   近30多年来,德国科学家通过扫描电镜和原子力显微镜对荷叶等2万种植物的叶面微观结构进行观察,揭示了荷叶拒水自洁的原理,并申请了专利。根据荷叶效应 (Lotus-effect)原理,德国科学家已经研制成功具有拒水自洁的建筑物表面涂料,而且从1999年开始上市销售,具有同样性能的瓦片也于2000年底上市销售。具有荷叶效应的服装也正在研制中[13]。由于荷叶效应具有广阔的应用前景,并具有很高的商业价值,所以关键技术和原理都申请了专利,并严格保密。

   荷叶效应的秘密主要在于它的微观结构和纳米结构,而不在于它的化学成分。Holloway于1994年对荷叶等植物的表面化学成分进行了分析。所有植物表面都有一层表皮,表皮将植物与周围环境隔开。所有植物的表皮主要成分都是埋置于多元酯母体内的可溶性油脂,因此,植物的表皮都具有一定的拒水性。经过对2万种植物表面进行分析后发现,具有光滑表面的植物都没有拒水自洁的功能,而具有粗糙表面的植物,都有一定的拒水作用,在所有的植物中,荷叶的拒水自洁作用最强,水在其表面的接触角达到160.4°,除了荷叶外,芋头叶和大头菜叶的拒水自洁作用也很强,水在其上的接触角分别达到160.3和159.7[3]。水在各种常用纤维表面上的接触角如下表1所示[14]。

1  各种纤维与水的接触角

纤维

测定者所测定的接触角(°)

立花等

根本等

Hollies等

Stewart等

59

 

-

47

粘胶

38

 

39

-

羊毛

81

78

85

-

锦纶

64

61

83

70

腈纶

53

53

-48

-

涤纶

67

64

79

75

从表1中可看出,不同的测定者,数据是有差异的。但从总体上看,没有一种纤维使水在其表面

的接触角大于90°所以可以说,常用纺织纤维都不具有拒水能力。当然,更不具有拒油的能力。

   通过研究荷叶效应的拒水自洁原理可知,具有高度拒水自洁的织物必须具备如下条件:(1)首先

使纤维表面具有基本的拒水性能 (即水与其表面的接触角大于90°)。对于这一步,可以以通过纳米技术、等离子处理技术和涂层浸轧技术达到。(如:利用高温下有机过氧化)物等分解形成自由基,引发自由能较低的含硅或含氟的有机单体,对PET织物表面接枝改性[15]。(2)要使织物具有粗糙的表。虽然织物表面本身是非常粗糙的,但这种粗糙结构是以纤维为最小单位,远大于纳米结构的要求。拒水自洁织物表面的粗糙应是纤维表面的粗糙,该粗糙应达到纳米级水平[14]。

    因此,利用仿生学原理,将荷叶效应原理应用于涤纶织物的拒水拒油整理中,将可以研制出一种超强的拒水透气纺织品。

5   发展前景

  荷叶效应能够在理论上突破常规的拒水材科研制思路,将降低材料的表面能和产生微观结构的粗糙度结合起来,使织物的拒水、拒油性能提高,并使织物具有良好的透气性。

  美国科学家H.C.Von Baeye[16]认为,荷叶效应在织物拒水拒油整理方面应用的研究成果具有广阔应用前景,超强拒水透气织物,首先可以用在高科技领域中,例如:用于现代军事和战争的服装,除了遮风挡雨,可以在恶劣的潮湿环境中,使战士们保持干爽舒服,而且可以防止有毒液体的侵入,

随着某些血液传播疾病在世界范围内的肆虐横行,可以用作保护医务人员不受血载病菌侵害的医用(血液)屏障织物。还可以用作生物保护服,可以保障开展危险性试验研究的人员的安全和舒适,对于民用来说,更是制作风雨衣和体育服装的理想材料。所以,涤纶作为化学纤维中的最大品种及其具有优良性能,利用荷叶效应对其进行拒水拒油的差别化处理,将可研制出一种超强的拒水透气的涤纶纺织品,广泛地用于工业、农业、军事、民用等方面。

 

参考文献:

[1]胡祖明等,涤纶纤维及加工技术进展情况,合成技术及应用,第13卷第2期

[2]周向东,涤纶细旦丝织物有机氟树脂耐久性拒水拒抽整理,印染助剂,1996年8月第13卷第4期

[3]顾振亚等,拒液纺织品开发的新途径,棉纺织技术,2002年1月,第30卷第l期

  [4]汪建 周蓉,纺织品拒水拒油整理的机理与应用,河南化工,1999年第10期

[5] Lomax GR.Joural of Coated Fabrics [J]1985.15 (7): 40-46

  [6]朱利容等,防水透湿织物技术性能探讨,四川丝绸,2000年第3期

  [7]付延鲍等,防水透湿织物的发展与现状,青岛大学学报,l999年12月

[8] Harricnt Melnander.VTr Tied [J] 1993,1527,45

[9]狄剑锋,橡胶涂层织物表面能及稳定性研究,纺织学报,第22卷第5期

[10]刘泽久,染整工艺学(第四册),纺织工业出版社,2001年,128-136

  [11]罗巨涛 萤维利,纺织品有机硅及有机氟整理,北京中国纺织出版社,1999,1-21

  [12] 张旺笋,防水透湿织物加工技术的进展,产业用纺织品,第18卷总第117期

  [13] Wilhelen Barthlott, Christoph Nelohui L. effect lotus: surfaces auto net toyames section I' example dC nature. International Textile  Bulletin, 2001, (1): 8-12

[14] 杜文琴,荷叶效应在拒水自洁织物上的应用,印染,200l,No,9

  [15]雷景新,含氢硅油表面接枝改性PET织物的拒水性能,功能高分子学报,2000,9,vol.13

[16] H.C.VonBacyer, New York Academy of sciences, January, 2000

*请手机端微信扫描或长按识别“产品手册”、“公众号”、“网站”等二维码,可了解各企业系列产品内容!

欢迎留言

 
 
欢迎投稿
CTA中国纺织助剂月刊杂志投稿声明:
        (1)投稿文章一经采用,支付作者稿酬200元/篇(如优势产品应用、经验类总结文章等);
        (2)本刊投稿邮箱为
                 ctanet@163.com(公司)
                 350652029@qq.com(个人)
        (3)月刊杂志十余年投稿文章集结在网站和微信“专家投稿”栏目,感谢关注!

品牌推广咨询 020-84869930
请关注微信:CTA666
微信视频号:巴络克CTA纺织助剂网
抖音号:CTA2007
浏览书橱,可翻阅电子杂志及产品资料!

索阅杂志、原料/助剂/牛仔洗水/设备/行业会议/检测产品等资料 更多索阅信息

我要找产品、解决方案 更多求购信息