后整理
纺织品的阻燃研究(上)
佚名
2021/9/10
浏览数:259

纺织品的阻燃研究(上)

纺织品的阻燃研究(上)

1. 介绍
人类在早期文明阶段就已认识到纺织品(尤其是以天然纤维素纤维——棉花和亚麻,如亚麻布——为基础的纺织品)燃烧所造成的特殊危险,从那时起,盐(如明矾)就被用来降低纺织品的易燃性,这样就使纺织品有了阻燃性。时至今日,由于大多数纺织品(例如占据首位的衣服)都具有类似的性质,而且在我们周围的环境中,现有的纤维聚合物都具有较大的比表面积,从而可最大限度地接触大气中的氧,因此,上述危险依然伴随着我们。在1997年4月16日沙特阿拉伯发生的火灾悲剧中,这些因素成了人们关注的焦点。那次火灾发生在麦加朝圣期间,由于火焰蔓延到麦加附近买那的帐篷露营地,340多名朝圣者丧身火海。火焰的迅速蔓延殃及到70000多个帐篷,许多朝圣者被烧伤。所有帐篷很可能都是用棉织品制作的,火灾很可能是其易燃性质的一个结果,同时又被干热的环境、大风和密集的帐篷所加重。
全世界几乎没有几份全面性的火灾统计,尤其是试图把死伤人数与火灾原因(如纺织材料的引燃和燃烧传播性质)联系在一起的火灾统计。
英国的年度火灾统计是可以得到的最全面火灾统计中的少数几份,它试图提供的信息或许可反映一个约有5500万人口的欧洲国家的情况。这些统计表明,到1998年为止,约20%的住宅火灾是由纺织品引起的(即纺织品是首先被引燃的材料),50%以上的死亡是由这些火灾造成的。表l所示为过去17年的典型数据(虽然从1993年开始,这种详细数据已无法自由获取),这表明,一般来说,在1982年到1988年期间,英国住宅火灾的死亡人数每年为700左右。从那以后,死亡人数下降到500~600的水平上。纺织品关联火灾所造成的死亡人数也呈现出类似的特点,因此,可以下结论说,1989年以来通过法律强制实施在英国国内市场销售阻燃装潢型家具对上述死亡人数的减少起了重要的作用。图1中的数据图给出了不同纺织品所具有的相对风险及其在指定期间的变化。在该期间,不但装潢型家具条例得到了实施,而且英国住宅的烟雾报警发生率也在增加(尤其是在最近10年期间)。

表1 英国住宅火灾的总死亡人数及纺织品关联火灾的死亡人数 (1982-1998年)

年份 英国住宅火灾死亡 住宅中纺织品关联死亡人数
衣服 床上用品 家具织物 地毯 总数
1998 497 62 71 69 11 213
1997 566 59 51 119 8 237
1996 556 60 79 108 11 219
1995 549 85 71 108 8 275
1994 477 65 58 86 5 224
1993 536 51 85 105 19 260
1992 594 71 82 134 22 309
1991 608 59 85 27 10 281
1990 627 61 89 157 20 377
1988 732 92 141 195 20 448
1986 753 69 150 219 17 455


纺织品的阻燃研究(上)

1. 介绍
人类在早期文明阶段就已认识到纺织品(尤其是以天然纤维素纤维——棉花和亚麻,如亚麻布——为基础的纺织品)燃烧所造成的特殊危险,从那时起,盐(如明矾)就被用来降低纺织品的易燃性,这样就使纺织品有了阻燃性。时至今日,由于大多数纺织品(例如占据首位的衣服)都具有类似的性质,而且在我们周围的环境中,现有的纤维聚合物都具有较大的比表面积,从而可最大限度地接触大气中的氧,因此,上述危险依然伴随着我们。在1997年4月16日沙特阿拉伯发生的火灾悲剧中,这些因素成了人们关注的焦点。那次火灾发生在麦加朝圣期间,由于火焰蔓延到麦加附近买那的帐篷露营地,340多名朝圣者丧身火海。火焰的迅速蔓延殃及到70000多个帐篷,许多朝圣者被烧伤。所有帐篷很可能都是用棉织品制作的,火灾很可能是其易燃性质的一个结果,同时又被干热的环境、大风和密集的帐篷所加重。
全世界几乎没有几份全面性的火灾统计,尤其是试图把死伤人数与火灾原因(如纺织材料的引燃和燃烧传播性质)联系在一起的火灾统计。
英国的年度火灾统计是可以得到的最全面火灾统计中的少数几份,它试图提供的信息或许可反映一个约有5500万人口的欧洲国家的情况。这些统计表明,到1998年为止,约20%的住宅火灾是由纺织品引起的(即纺织品是首先被引燃的材料),50%以上的死亡是由这些火灾造成的。表l所示为过去17年的典型数据(虽然从1993年开始,这种详细数据已无法自由获取),这表明,一般来说,在1982年到1988年期间,英国住宅火灾的死亡人数每年为700左右。从那以后,死亡人数下降到500~600的水平上。纺织品关联火灾所造成的死亡人数也呈现出类似的特点,因此,可以下结论说,1989年以来通过法律强制实施在英国国内市场销售阻燃装潢型家具对上述死亡人数的减少起了重要的作用。图1中的数据图给出了不同纺织品所具有的相对风险及其在指定期间的变化。在该期间,不但装潢型家具条例得到了实施,而且英国住宅的烟雾报警发生率也在增加(尤其是在最近10年期间)。

表1 英国住宅火灾的总死亡人数及纺织品关联火灾的死亡人数 (1982-1998年)

年份 英国住宅火灾死亡 住宅中纺织品关联死亡人数
衣服 床上用品 家具织物 地毯 总数
1998 497 62 71 69 11 213
1997 566 59 51 119 8 237
1996 556 60 79 108 11 219
1995 549 85 71 108 8 275
1994 477 65 58 86 5 224
1993 536 51 85 105 19 260
1992 594 71 82 134 22 309
1991 608 59 85 27 10 281
1990 627 61 89 157 20 377
1988 732 92 141 195 20 448
1986 753 69 150 219 17 455


1984 692 59 124 167 22 372
1982 728 86 140 152 23 424

衣服关联死亡人数通常在年死亡事故50~90范围内波动。作为一个群组,它在很大程度上被政府和纺织界所忽视(睡衣和防护服领域除外)。除非人们认识到这类普通危险(例如与睡衣、纱丽等衣服相关联的火灾死亡,这种火灾曾在印度和上埃及等地方发生,那里人们通常用明火做饭),否则与衣服关联的火灾往往因为具有个人性质而很难为公众所注意,也不会出现立法的迫切要求。
与纺织品相关的英国住宅火灾所导致的死亡



通常只有在大量生命和财产损失发生之时才会产生法规和条例。在过去的20年间,英国对多起火灾进行了大力宣传,从而推动了对现有火灾预防和防止条例及程序的评价和更新。表2所列是一些重要事故,所有这些事故都与纺织品相关——纺织品或者是首先被点燃的材料,或者是造成重大生命损失或损伤的原因。在这些事故中,较出名的是1979年的F·W·伍尔沃斯商店火灾,它导致了英国第一个装潢型家具用香烟点燃要求的问世。此后,1990年的一部更为全面的法规也随之诞生,它对火柴的点燃有要求,对泡沫填料有强制性燃烧限制。类似的情况是,曼彻斯特波音737飞机火灾也使英国民航和美国联邦航空当局推出了已列入计划的座椅耐火材料要求,该要求的对象是超过30名乘客的所有客机。
表2中的所有火灾都具有共同的特点,即各个火灾现场所存在的纺织品都是作为首先被相关火源点燃的材料发挥作用的。第二或其后,导致火焰成长并向毗邻材料蔓延的速度也具有重要的特点,即一旦蔓延达到了这种速度,不但遇难者无法逃生,而且消防队员也无法控制火势。所以,这些毁灭性的火灾足以较为清楚地证明,纺织品易首先被点燃,随后便出现致使火焰成长的速度。但这很少是火灾的直接原因。例如燃烧强度虽是死亡的主要原因,但烟雾和燃烧所产生的气体则可使人迷失方向,从而影响逃生,结果是失能、窒息和死亡。只有在衣服关联火灾中,尤其是在衣服较宽松且直接穿在身上(如睡衣和夏装)之时,伤亡才主要是由燃烧导致的。

表2英国和爱尔兰发生的与纺织品相关的主要火灾( 1979 年至现在)
火灾
原因
后果

卧铺车火灾( 1978 年 7 月 6 日陶顿市)
电暖气旁的数袋未洗的和已洗过的衣服。
12 人死亡, 15 人非致命伤

F·W·伍尔沃斯商店火灾( 1979 年 5 月 8 日曼彻斯特市)
餐厅中若干内填聚氨酯,外罩聚丙烯织物的家具被发烟材料点燃。
10 人死亡, 53 人非致命伤

梦幻迪斯科舞厅火灾( 1981 年 2 月 14 日都柏林)
外罩 PVC ,内填泡沫塑料的家具被点燃,导致多排就餐排挡轰然。
48 人死亡, 128 人非致命伤。

波音 737 飞机火灾( 1985 年 8 月 22 日曼彻斯特机场)
点燃罐穿孔,导致外部油池起火,火焰沿着机身进入机舱,机舱被座椅材料燃烧产生的有毒烟气淹没。
55 人死亡, 15 人重伤。

温莎宫火灾( 1992 年)


泛光灯点燃大型窗帘的上部,火焰沿着通风道进入木制顶棚和结构。
无人伤亡,文物遗产等损失达 4 千万英镑。

3纺织品的燃烧行为
3.1纤维
纤维的燃烧行为受多个热转变温度和热动力参数的影响,而且也经常取决于这些温度和参数。表3所列为常见的纤维及其物理玻璃转化(Tg)和熔融转化(Tm)。在适当条件下。可以和其化学上相关的热解转化(Tp)、点燃及初始有焰燃烧(Tc)相比较。此外,该表还列出了火焰温度和燃烧热的典型数值。一般来说,相应的了,(通常和Tp)温度越低,火焰温度越高,则纤维越易燃烧。这一普遍性的典型代表是天然纤维素纤维(棉、粘胶丝、亚麻)以及某些合成纤维(如丙烯酸)。
表3列出了各种纤维的极限氧指数(LOI)值,这是材料固有燃烧性能的量度,可用百分比或小数表示。LOI值为21%(或0.21)或21%以下的纤维易于点燃并可在空气(含氧20.8%)中迅速燃烧。LOI值高于21的纤维可以点燃,但燃烧较慢。一般来说,LOI值约高于26~28的纤维和纺织品可视为阻燃物并可通过织物横、竖向小火点燃试验。几乎所有的纺织品易燃性试验,不管是基于简单的织物条片试验、复合材料试验(如BS5852:1997、ISO8191/2、ENl021—1/2和EN597—l/2)还是基于更多的产品危险相关试验(如地毯BS6307、帐篷BS6341和熔融金属喷溅BS6357),本质上都是抗点燃试验。

表3 常用纤维的热转化温度

纤维 Tg ℃ 软化Tm ℃验室熔化 Tp ℃验室热裂解 Tc ℃散点燃 LOI%极限氧指数 △Hc kjg-1燃烧热
羊毛 254 600 25 27
棉 350 350 18.4 19
粘胶丝 350 420 18.9 19
尼龙6 50 215 431 450 20-21.5 39
尼龙6.6 50 265 403 530 20-21.5 32
聚酯 80-90 255 420-447 480 20-21 24
丙烯酸 100 >220 290 分解>250 18.2 32
聚丙烯 -20 165 470 550 18.6 44
改性聚丙烯腈 <80 >240 273 690 29-30 -
聚氯乙烯(PVC) <80 >180 >180 450 37-39 21
氧化丙烯酸 - - ≥640 - - 45
间芳族聚酰胺(例如Nomex) 270 375 410 >500 29-30 30
对芳族聚酰胺(例如Kevlar) 340 560 >590 >550 29 -

在材料防火学界,人们普遍认为,在真实火灾条件下,决定燃烧危险性的是放热速率。表3表明,燃烧热(△Hc)在各种纤维之间几乎没有什么差别。当然,与不太易燃的纤维(如芳族聚酰胺纤维和氧化丙烯酸纤维)相比,某些纤维(如棉花)似乎具有较低的燃烧热,但是,决定火焰蔓延速率和燃烧强度的是放热速度。
目前,只有用于建筑材料、飞机和船舶内部以及座椅的纺织品被要求具有最低级别的放热速率。放热速率可用锥形量热器和俄亥俄州立大学量热器等仪器来测量(评估飞机内部纺织品的性能可在35 kWm -2入射热通量下进行)。现在,已发表的有关纺织品放热的数据非常稀少,表4是目前所能得到的一些精选数据。





表4 若干纤维和混合物的峰值放热速率

纤维/混合物 OSU 35 kWm-2 锥形量热器 25 kWm-2 锥形量热器 25 kWm-2
棉 - 310 115(1.5mm多层)
棉/羊毛 102(同上,
另外4.5mm羊毛夹层)
棉/聚酯阻燃棉 167 -
Proban 103
铵盐 125
63% 氧化丙烯酸 /17% 芳族聚酰胺 / 20% PVC34 -
80% 氧化丙烯酸 / 20% 芳族聚酰胺 38 -
33% 变性丙烯酸 / 35% 阻燃粘胶丝 / 32% 芳族聚酰胺47 -
61.5% 马海毛 / 38.5% 聚酯(作为经纱)58

3.2织物和纱的结构
由特定型纤维或混合纤维构成的织物所具有的燃烧行为受多种因素的影响,这包括火源的性质、影响的时间、织物的方向和点燃位置(例如,在织物的边缘还是正面,顶部还是底部)、环境温度和相对湿度、空气的速率,以及(最后但并非最不重要的)织物的结构变量。在任何标准实验中,织物方向、点燃位置和时间以及大气变量都是可以控制的。但是尽管如此,如巴克人所述,与较厚重的多层结构相比,较低的织物面积密度和稀松的结构仍会提高燃烧速率,从而增大燃烧强度所构成的危险。
亨德利克斯等人在极限氧指数LOI与面积密度之间建立了线性关系,在极限氧指数LOI与一系列棉织物的透气性之间建立了对数关系,不过其相关性较差。这样,织物的易燃性不仅取决于纤维的行为,而且还取决于织物内纤维排列的物理几何结构。米勒等人认为,易燃性的一个可选量度是确定燃烧速率为零时的氧指数。由此引出的棉花的固有氧指数值(OI) 0 为0.13,远远小于所引用的LOI值0.18~0.19(见表3)。随后,斯杜兹利用改进的氧指数技术为一系列从顶部(COC—T)或底部(COC—B)点燃的聚合物样品的持续燃烧确定了所谓的临界氧浓度(COC)。前者类似于相应的LOI值,可视为受非固有因素(如聚合物几何结构、炭量以及熔融滴淌)的影响。但后者不依赖于这些因素,因而代表着聚合物的固有属性。纤维素的COC—B值(0.135)相当于上述的(OI) 0 值。可以认为,(在空气中)非易燃的聚合物可能具有高于0.21的COC—B值。
根据这些研究,豪洛克斯等人把熄灭氧指数EOI定义为:当织物样品的顶部受一个LOI火源作用一段规定的点燃时间后,样品在限定的观察时间内恰好不再保持任何火焰时的氧浓度。对于简单的易燃织物(如棉花、尼龙和聚酯),其相应的EOI值随点火器作用时间的减少而减小。利用外推法可以界定零时间的EOI值[EOI]0 。对于单层典型棉织物,所导出的数值是0.14。可以认为,该数值不依赖于点火器变量。在没有收缩和熔融滴淌所导致的点燃问题时,可以确定出热塑性纤维的类似的[EOI]0值。与LOI值一样,[EOI]0值也随单个多层织物的面积密度而增加(见图2)。重复各种经阻燃处理的棉纤维的试验町以产生类似的结果,但例外的情况是,随着点燃时间的减少,E0I值反而增加。其原因在于,延长时间会促使成炭面积增大,这便缩短了点火器火焰移开后的燃烧时间。



表4 [EOI]0与面积密度M(gm-2) 和相关LIO值之间的线性依赖关系分析



织物 E0 E1/10-5 LOI
棉 0.135 3.28 0.19
Proban 棉0.199 9.60 0.31-0.33
Pyrovatex 棉0.187 10.70 0.29-0.30
聚酯 0.226 3.18 0.20-0.215
尼龙6.6 0.221 2.89 0.20-0.215

根据由公式 [EOI]0 = E0 十 E1M 界定的线性趋势外推,可以确定纤维固有熄灭氧指数 ( 见表 5) 及相应的织物面积密度灵敏度 E1 的值。
这些结果表明,棉花的 E0 值 0.135 与 COC—B 值一样.因而是纤维的固有属性。 LOI 值约为 0.30 的阻燃棉都具有小于且接近 0.21 的 E0 值,因此可视为本质上具有阻燃性。聚酯和尼龙 6.6 都具有接近其各自 LOI 值的 E0 ,这或许是熔融和滴淌效应的结果。对非阻燃织物而言,织物的灵敏度值 E1大致相同,这表明面积密度的效应不依赖于纤维的类型。然而,对阻燃棉而言,面积密度的依赖性则大得多,这可能是成炭的结果。这意味着,存在阻燃剂时,成品棉织物的行为可能是由阻燃剂浓度与面积密度的平衡决定的,因此,与重织物相比,轻织物需要较高的阻燃浓度。在 [E0I]0 ,值、织物厚度与透气性的对数之间也能看到类似的关系。
虽然前面引用的有关织物结构的资料断言,较粗的纱具有较强的抗点燃性,但纱的几何条件和结构对燃烧行为的影响并未得到深入的研究。这里假定,纤维类型和面积密度保持不变 ( 对较粗的纱,覆盖系数将减小,具有反向作用的透气性将增加 ) 。格尔维等人最近的研究检查了含有改性腈纶/阻燃粘胶丝和羊毛/阻燃粘胶丝的混纺纱的燃烧行为,这里的阻燃粘胶丝是用环锭纺织法和气流纺织法制造的 Visil( 芬兰 Sateri 纤维公司生产 ) 。它们具有同样的公称线性密度并被织成不同的布块。图3所示为所有混纺纱的 LOI 结果。羊毛/Visil 混合织物都未通过所采用的试验 (BS5438 : 1989 ,试验 2( 正面点火 )) ,图 4 所示只是改性腈纶/ Visil 混合织物的炭长度。
假定每种混合织物都含有阻燃纤维成分,则图 3 可以表明,纱的结构差别会严重影响织物的燃烧行为。据认为,较易燃的气流纱是对纤维成分随机进行化改进的结果 ( 使用气流人所述,与较厚重的多层结构相比,较低的织物面积密度和稀松的结构仍会提高燃烧速率,从而增大燃烧强度所构成的危险。
亨德利克斯等人在极限氧指数 LOI 与面积密度之间建立了线性关系,在极限氧指数 LOI 与一系列棉织物的透气性之间建立了对数关系,不过其相关性较差。这样,织物的易燃性不仅取决于纤维的行为,而且还取决于织物内纤维排列的物理几何结构。米勒等人认为,易燃性的一个可选量度是确定燃烧速率为零时的氧指数。由此引出的棉花的固有氧指数值 (OI)0 为 0.13 ,远远小于所引用的 LOI 值 0.18 ~ 0.19( 见表 3) 。随后,斯杜兹利用改进的氧指数技术为一系列从顶部 (COC—T) 或底部 (COC—B) 点燃的聚合物样品的持续燃烧确定了所谓的临界氧浓度 (COC) 。前者类似于相应的 LOI 值,可视为受非固有因素 ( 如聚合物几何结构、炭量以及熔融滴淌 ) 的影响。但后者不依赖于这些因素,因而代表着聚合物的固有属性。纤维素的 COC—B 值 (0.135) 相当于上述的 (OI)0 值。可以认为, ( 在空气中 ) 非易燃的聚合物可能具有高于 0.21 的 COC—B 值。


根据这些研究,豪洛克斯等人把熄灭氧指数 EOI 定义为:当织物样品的顶部受一个 LOI 火源作用一段规定的点燃时间后,样品在限定的观察时间内恰好不再保持任何火焰时的氧浓度。对于简单的易燃织物 ( 如棉花、尼龙和聚酯 ) ,其相应的 EOI 值随点火器作用时间的减少而减小。利用外推法可以界定零时间的 EOI 值 [EOI]0 。对于单层典型棉织物,所导出的数值是 0.14 。可以认为,该数值不依赖于点火器变量。在没有收缩和熔融滴淌所导致的点燃问题时,可以确定出热塑性纤维的类似的 [EOI]0 值。与 LOI 值一样, [EOI]0 值也随单个多层织物的面积密度而增加 ( 见图 2) 。重复各种经阻燃处理的棉纤维的试验町以产生类似的结果,但例外的情况是,随着点燃时间的减少, E0I 值反而增加。其原因在于,延长时间会促使成炭面积增大,这便缩短了点火器火焰移开后的燃烧时间。
根据由公式 [EOI]0 = E0 十 E1M 界定的线性趋势外推,可以确定纤维固有熄灭氧指数 ( 见表 5) 及相应的织物面积密度灵敏度 E1 的值。
这些结果表明,棉花的 E0 值 0.135 与 COC—B 值一样.因而是纤维的固有属性。 LOI 值约为 0.30 的阻燃棉都具有小于且接近 0.21 的 E0 值,因此可视为本质上具有阻燃性。聚酯和尼龙 6.6 都具有接近其各自 LOI 值的 E0 ,这或许是熔融和滴淌效应的结果。对非阻燃织物而言,织物的灵敏度值 E1 大致相同,这表明面积密度的效应不依赖于纤维的类型。然而,对阻燃棉而言,面积密度的依赖性则大得多,这可能是成炭的结果。这意味着,存在阻燃剂时,成品棉织物的行为可能是由阻燃剂浓度与面积密度的平衡决定的,因此,与重织物相比,轻织物需要较高的阻燃浓度。在 [E0I]0 ,值、织物厚度与透气性的对数之间也能看到类似的关系。
5燃烧和阻燃的机理
在3节及表3和表4中,我们论述了决定纺织品纤维固有燃烧行为的基本热参量。为了了解现有纺织品阻燃剂如何起作用以及更重要的--如何研发未来的阻燃剂,关键是更为深入地探索成纤聚合物的燃烧机理。
5.1阻燃策略
图7所示为纺织品燃烧机理(作为一种反馈机理)的过程,在这种燃烧中,燃料(来自热降解或热解纤维)、热(来自引燃和燃烧)和氧(来自空气)均作为主要成分发挥作用。为了中断这种机理,人们提出了5种方式(a)~(e)。阻燃剂可在其中的一种或多种方式下发挥作用。以下所列为各个阶段及相关的阻燃作用:
a)除热。
b)提高分解温度。
c)减少可燃挥发物的形成,增加炭量。
d)减少与氧的接触或稀释火焰。
e)干扰火焰化学反应和/或提高燃料点燃温度(Tc)。
熔解和/或降解和/或脱水需吸收大量的热(例如,在背涂层中含无机和有机磷的制剂、氢氧化铝或水化氧化铝)。通常不为阻燃剂所利用;而在固有耐火和耐热纤维(如芳族聚酰胺纤维)中较常见。纤维素和羊毛中多数含磷、含氮的阻燃剂;在羊毛中的重金属络合物。水合的及某些促炭阻燃剂可释放水;含卤素阻燃剂可释放卤化氢。含卤素阻燃剂,经常与氧化锑结合。从上述内容可以看出,某些类阻燃剂可以在多种方式下发挥作用,多数有效的例子都是如此。此外,某些阻燃制剂可产生液相中间物,该中间物可湿润纤维表面,从而成为隔热和隔氧的屏障--广为接受的硼酸盐-硼酸混合物即可在这种方式下发挥作用。此外,它还可促进成炭。为了简化化学阻燃行为之不同方式的分类,可以使用术语'凝聚'相和'气或蒸汽'相活动来区分它们。二者都是复合项,前者包括上述的(a~c)方式,后者包括(d)和(e)方式。物理机理通常同时起作用,这些机理包括通过形成涂层来排除氧气和/或热量(方式d)、增加热容量(方式a)以及利用非易燃气体稀释或覆盖火焰(方式d)。


5.2热塑性
纤维是否可以变软和/或熔化(由表3中的物理转化温度所界定)决定着它是否具有热塑性。热塑性因其相关的物理变化,可严重影响阻燃剂的行为。传统的热塑性纤维(例如,聚酰胺、聚酯和聚丙烯)一收缩即可离开点燃火焰,从而避免被点燃:这使它们表面上显现出阻燃性。事实上,如果收缩受阻,它们便会猛烈燃烧。这种所谓的支架效应可在聚酯-棉以及类似的混纺织物上看到,即熔融聚合物熔化到非热塑性棉上并被点燃。类似的效应也可在由热塑性和非热塑性成分组成的复合纺织品上看到。


随着上述效应而来的是熔滴(通常是有焰熔滴)问题,这种滴淌虽可移除焰锋的热并促使火焰熄灭(因而可以'通过'垂直火焰试验),但却能使位于其下的表面(如地毯或皮肤)发生燃烧或二次点燃。
多数在批量生产期间或作为整理剂施用于传统合成纤维上的阻燃剂通常都是通过增强熔融滴淌和/或促助有焰熔滴熄灭两种方式发挥作用的。迄今为止,任何手段都不能降低热塑性并大量促进成炭,经阻燃处理的纤维素(包括粘胶纤维)的情况就是如此。
5.3阻燃机理和成炭
按(d)和/或(e)方式在气相起作用的阻燃剂都具有下述优点,即它们会减小引燃倾向并有助于纺织品成纤聚合物的火焰熄灭。这是因为一旦热降解产生的挥发产物或燃料在火焰中与氧发生氧化反应,其化学性质就会变得非常类似。因此,像断绝氧气((e)方式)或生成干扰自由基((f)方式)这两种方式无疑都能保证阻燃剂的效果。
根据成本和效益,锑-卤素阻燃剂是本体聚合物和背涂层纺织品领域内最成功阻燃剂。与用于纤维素纤维的含磷和氮的纤维反应性耐久阻燃剂不同(见下文),它们通常只能借助树脂粘合剂用作背涂层剂。就纺织品而言,多数锑-卤素体系都由三氧化二锑和含溴的有机分子(例如氧化十溴联苯(DBDPO)或六溴环十三烷(HBCD))组成。一经加热,这些物质就会释放出HBr基和Br。基。这二者会根据下面的示意图干扰火焰的化学反应。在示意图中:R 、CH2 、H 和OH基是火焰氧化链反应的一部分,该反应消耗燃料(RCH3)和氧:
人们最近对含溴分子的关注导致Sb-Br制剂的最终用户提出减少阻燃剂浓度或寻求其他替代物的要求(见后面的表10和11节)。
这些涂层体系可能都具有某种成炭特性,具体情况取决于树脂粘合剂(通常是丙烯酸共聚物或乙烯乙酸乙烯酯共聚物)的性质。这使它们能够成功地应用于例如含合成纤维的家具织物。如果这些织物要通过BS5852,ISO 1891/2,EN 1021和其他类型的复合材料试验,它们就必须具有抵消纤维热塑性效应的手段。然而,毫无疑问,多数有效的阻燃剂都可以促进成炭,方法是把有机纤维结构转变成碳质残渣或炭,从而减少挥发物(如燃料)的形成(方式(c))。这些阻燃剂需要吸热才能发挥作用,它们将间接提供另一种方式(a),方法是在成炭期间释放例如CO2、NH3和H20等非易燃分子(方式(d))。此外,炭具有同原始纤维的炭化拷贝一样的行为。作为热屏障,它会持续发挥作用,这与阻燃热塑性纤维不一样。
所以,成炭阻燃剂可同时为纺织品纤维提供耐火和耐热性能,因此可与许多高性能耐火和耐热纤维(如芳族聚酰胺和类似的纤维)相竞争(见表8)。


就有效成炭而言,聚合物主链必须含有侧基。侧基一消除,就会导致不饱和碳键的形成,并在所存在的非碳原子消除之后最终导致碳质炭的出现。当纤维素存在时,多数含磷、含氮的阻燃剂都会减少挥发物的形成并对成炭进行催化。对于所涉及的实际化学反应,这虽然是过于简单的看法,但一般而言,简单地总结该机理的一些主要特点则可为成炭提供一个模型。多数含磷阻燃剂都以这种双重能力发挥作用,其原因在于,一经加热,它们首先放出聚磷酸,聚磷酸使一部分无水吡喃葡萄糖中的羟基磷酸化,同时作为酸性催化剂促使这些同样重复的单元脱水。第一个反应可防止左旋葡萄聚糖形成,它是易燃挥发形成物的母体,这可以确保竞争中的成炭反应具有有利的热解路径,该路径的速率会因所释放多元酸的酸催化作用而进一步提高。虽然人们已对经阻燃处理的纤维素的成炭做了大量研究,但仍不能很好地了解非阻燃和阻燃纤维素成炭的实际机理。我们实验室最近的研究确认了挥发物与成炭之间的竞争并设想了一个3阶段过程,它取决于温度和所用阻燃剂的确切性质。图8所示为总体示意图,该图是根据以前发表过的机理和我们自己的调查结果绘制的。我们自己的调查是以对一系列经阻燃处理的棉织物所进行的释出气体分析、差示热分析(DTA)、气相色谱分析(GC)、热解一傅立叶变换红外线光谱分析(FTIR)和温度氧指数的研究为基础的。I阶段所示为在300~400℃温度范围内成炭和挥发的竞争机理(该机理已为人们所认可)。Ⅱ阶段所示为在400-600℃温度范围内,炭的氧化与脂肪族炭向芳香族形式转化之间的竞争。来自I阶段的挥发物也在这个范围内被氧化;从而产生与炭氧化和芳香化所生产物相类似的产物。
常用的经耐久性整理的固有阻燃纤维

纤维 阻燃剂结构成分 加放方式
自然纤维:
棉 含有机磷和有机氨的单体或反应性品种,例如Proban CC、Pyrovatex CP、Alammit P、KWB和Flacavon WP
锑-有机卤素体系,例如Flacavon F12/97、MyflamF
羊毛 六氟化锆络合物,例如 Zirpro、Pyrovatex CP、 Aflammit ZRF
再生纤维:
粘胶丝 含有机磷和有机氨/硫的品种,例如:阻燃粘胶丝(Lenzing)中的Sandoflam 5060,聚硅酸及络合物中的Visil AP
固有全盛纤维:
聚酯 有机磷品种:次磷酸低聚物,例如:Trevira CS;含磷添加物,如Fidion FR C/A
丙烯酸(变性腈纶) 卤代低聚物(35-50% w/w)加锑化合物,例如 Velicren;KanecaronC
聚丙烯 卤代-有机化合物,通常作为溴化衍生物,例如:Sandoflam 5072A
聚卤代烷 聚氯乙烯,例如 Clevyl;聚偏氯乙烯,例如:Saran H
高耐热耐火纤维(芳族):
芳族聚酰胺 聚间苯二甲酰间苯二胺,例如 Nomex、Conex。
聚对苯二甲酰对苯二胺,例如 Kevlar、Twaron Ar
芳族聚酰胺酰亚胺 例如 Kermel Ar
聚苯并咪唑 例如 PNI Ar



              

欢迎留言

 
 

索阅杂志、原料/助剂/牛仔洗水/设备/行业会议/检测产品等资料 更多索阅信息

我要找产品、解决方案 更多求购信息